11 research outputs found

    Some Properties of Li-Yorke Chaos

    Get PDF
    In this paper we study Li-Yorke chaos in linear operator on Banach space, in addition to  establishing some basic properties of Li-Yorke chaos and explanation when the operator be Li-Yorke chaos or not. We also prove...............

    On Completeness of Fuzzy Normed Spaces

    Get PDF
     In this paper, a new direction has been presented between the subject of domain theory and fuzzy normed spaces to introduce the so called fuzzy domain normed spaces and proved some results related to this subject concerning the completeness of such spaces.domai

    Best Proximity Point Theorem for α ̃–ψ ̃-Contractive Type Mapping in Fuzzy Normed Space

    Get PDF
    The best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced. After that, the best proximity point theorem for such type of mapping in a fuzzy normed space is state and prove. In addition, the idea of α ̃–ϕ ̃-proximal contractive mapping is presented in a fuzzy normed space and under specific conditions, the best proximity point theorem for such type of mappings is proved. Furthermore, some examples are offered to show the results' usefulness

    Properties of Chmielinski-orthogonality using Kadets-Klee property

    No full text
    The aim of this paper is to study new results of an approximate orthogonality of Birkhoff-James techniques in real Banach space , namely Chiemelinski orthogonality (even there is no ambiguity between the concepts symbolized by orthogonality) and provide some new geometric characterizations which is considered as the basis of our main definitions. Also, we explore relation between two different types of orthogonalities. First of them orthogonality in a real Banach space  and the other orthogonality in the space of bounded linear operator . We obtain a complete characterizations of these two orthogonalities in some types of Banach spaces such as strictly convex space, smooth space and reflexive space. The study is designed to give different results about the concept symmetry of Chmielinski-orthogonality for a compact linear operator on a reflexive, strictly convex Banach space having Kadets-Klee property by exploring a new type of a generalized some results with Birkhoff James orthogonality in the space of bounded linear operators. We also exhibit a smooth compact linear operator with a spectral value that is defined on a reflexive, strictly convex Banach space having Kadets-Klee property either having zero nullity or not -right-symmetric

    Hypercyclictty and Countable Hypercyclicity for Adjoint of Operators

    No full text
    Let be an infinite dimensional separable complex Hilbert space and let , where is the Banach algebra of all bounded linear operators on . In this paper we prove the following results. If is a operator, then 1. is a hypercyclic operator if and only if D and for every hyperinvariant subspace of . 2. If is a pure, then is a countably hypercyclic operator if and only if and for every hyperinvariant subspace of . 3. has a bounded set with dense orbit if and only if for every hyperinvariant subspace of ,

    A Review on Strength and Durability Properties of Wooden Ash Based Concrete

    No full text
    The partial replacement of cement in concrete with other building materials has come to light because of research on industrial waste and sustainable building practices. Concrete is made more affordable by using such components, and it also helps to ease disposal worries. Ash made by burning wood and other wood products is one example of such a substance. Many researchers focused on the utilization of wooden ash (WA) as a construction material. However, information is scattered, and no one can easily judge the impact of WA on concrete properties which restrict its use. Therefore, a details review is required which collect the past and current progress on WA as a construction material. relevant information. This review aims to collect all the relevant information including the general back of WA, physical and chemical aspects of WA, the impact of WA on concrete fresh properties, strength properties, and durability aspects in addition to microstructure analysis. The results indicate the WA decreased the slump and increased the setting time. Strength and durability properties improved with the substitution of WA due to pozzolanic reaction and micro-filling effects. However, the optimum dose is important. Different research recommends different optimum doses depending on source mix design etc. However, the majority of researcher suggests a 10% optimum substitution of WA. The review also concludes that, although WA has the potential to be used as a concrete ingredient but less researchers focused on WA as compared to other waste materials such as fly ash and silica fume etc

    Basalt Fibers Reinforced Concrete: Strength and Failure Modes

    No full text
    The low tensile capacity of concrete often results in brittle failure without any warning. One way to cope with this issue is to add fibers and essentially improve the tensile strength (TS) behavior of concrete and offset its undesirable brittle failure. In recent investigations, basalt fibers (BFs), as compared to a variety of other kinds of fiber, have attracted the attention of researchers. In that respect, BFs exhibit several benefits, such as excellent elastic properties, great strength, high elastic modulus, higher thermal stability, and decent chemical stability. Although many researchers have reported that BFs can be embedded in concrete to improve the tensile capacity, a more profound understanding of its contribution is still needed. However, the information is scattered and it is difficult for the reader to identify the benefits of BFs. Therefore, a detailed assessment is essential to summarize all relevant information and provide an easy path for the reader. This review (part Ⅰ) summarizes all the relevant information, including flow properties, strength properties, and failure modes. Results reveal that BFs can greatly enhance the strength properties and change the brittle nature of concrete to one of ductility. However, it unfavorably impacts the flowability of concrete. Furthermore, the optimal proportion is shown to be important as a higher dose can adversely affect the strength of concrete, due to a deficiency of flowability. The typical range of the ideal incorporation of BFs varies from 0.5 to 1.5%. Finally, the review also indicates the research gap for future research studies that must be cautiously explored before being used in the real world

    Feasibility Study on Concrete Made with Substitution of Quarry Dust: A Review

    No full text
    Concrete mechanical properties could be improved through adding different materials at the mixing stage. Quarry dust (QD) is the waste produced by manufactured sand machines and comprise approximately 30–40% of the total quantity of QD generated. When it dries, it transforms into a fine dust that poses a tremendous hazard to the environment by contaminating the soil and water and seriously endangering human health. QD utilization in concrete is one of the best options. Though a lot of scholars focus on imitation of QD in concrete, knowledge is scattered, and a detailed review is required. This review collects the information regarding QD-based concrete, including fresh properties, strength, durability, and microstructure analysis. The results indicate that QD is suitable for concrete to a certain extent, but higher percentages adversely affect properties of concrete due to absence of fluidity. The review also indicates that up to 40–50% substitution of QD as a fine aggregate can be utilized in concrete with no harmful effects on strength and durability. Furthermore, although QD possesses cementitious properties and can be used as cement substitute to some extent, less research has explored this area

    Feasibility Study on Concrete Made with Substitution of Quarry Dust: A Review

    No full text
    Concrete mechanical properties could be improved through adding different materials at the mixing stage. Quarry dust (QD) is the waste produced by manufactured sand machines and comprise approximately 30–40% of the total quantity of QD generated. When it dries, it transforms into a fine dust that poses a tremendous hazard to the environment by contaminating the soil and water and seriously endangering human health. QD utilization in concrete is one of the best options. Though a lot of scholars focus on imitation of QD in concrete, knowledge is scattered, and a detailed review is required. This review collects the information regarding QD-based concrete, including fresh properties, strength, durability, and microstructure analysis. The results indicate that QD is suitable for concrete to a certain extent, but higher percentages adversely affect properties of concrete due to absence of fluidity. The review also indicates that up to 40–50% substitution of QD as a fine aggregate can be utilized in concrete with no harmful effects on strength and durability. Furthermore, although QD possesses cementitious properties and can be used as cement substitute to some extent, less research has explored this area

    Performance of GACC and GACP to treat institutional wastewater: a sustainable technique

    No full text
    Experiments were carried out using granular activated carbon (GAC) adsorption techniques to treat wastewater contaminated with organic compounds caused by diverse human activities. Two techniques were assessed: adsorbent GAC prepared from coconut shell (GACC) and adsorbent GAC from palm shell (GACP). A comparison of these two techniques was undertaken to identify ways to improve the efficiency of the treatment process. Analysis of the processed wastewater showed that with GACC the removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity, total suspended solids (TSS) and total dissolved solids (TDS) was 65, 60, 82, 82 and 8.7%, respectively, while in the case of GACP, the removal efficiency was 55, 60, 81, 91 and 22%, respectively. It can therefore be concluded that GACC is more effective than GACP for BOD removal, while GACP is better than GACC for TSS and TDS removal. It was also found that for COD and turbidity almost the same results were achieved by the two techniques. In addition, it was observed that both GACC and GACP reduced pH value to 7.9 after 24 hrs. Moreover, the optimal time period for removal of BOD and TDS was 1 hr and 3 hrs, respectively, for both techniques
    corecore